Key Concepts:

- Inheritance patterns are often more complex than predicted by simple Mendelian genetics
- Mendelian inheritance has its physical basis in the behavior of chromosomes
- Sex-linked genes exhibit unique patterns of inheritance
- Linked genes tend to be inherited together because they are located near each other on the same chromosome
- Some inheritance patterns are exceptions to the standard chromosome theory

READ:

- Chapter 15

Key Terms: Here is a list of key terms and concepts you will hear about and see during the chapter readings. Get to know them!
Complete dominance
Incomplete dominance
Codominance
Multiple alleles
Pleiotropy
Epistasis
Polygenic inheritance
Multifactorial
Chromosome theory of
inheritance
Sex-linked gene
X Inactivation
Barr body
Linked genes
Genetic recombination
Parental types
Recombinant types
Crossing over

Genetic map
Linkage map
Map units
Genomic imprinting
Mitochondrial DNA

Questions for Your BiLL:

Extending Mendelian Genetics

1. Give an example of incomplete dominance and explain why it does not support the blending theory of inheritance.
2. Explain how phenotypic expression in the heterozygote differs with complete dominance, incomplete dominance, and codominance.
3. Explain why genetic dominance does not mean that the dominant allele subdues a recessive allele. Illustrate your explanation with the example of round versus wrinkled pea seed shape.
4. Explain why dominant alleles are not necessarily more common in a population. Illustrate your explanation with an example.
5. Describe the inheritance of the $A B O$ blood system, an example of multiple allele inheritance, and explain why the I^{A} and I^{B} alleles are said to be co-dominant.
6. Define and give real world examples of pleiotropy and epistasis.
7. Describe a simple model for polygenic inheritance and explain why most polygenic characters are described in quantitative terms.
8. Describe how environmental conditions can influence the phenotypic expression of a character. Explain what is meant by "a norm of reaction." Explain what it means if a trait is considered multifactorial.
Locating Genes Along Chromosomes / Work of Thomas Morgan
9. What is the chromosomal theory of inheritance?
10. Describe how sex is genetically determined in humans and how the SRY gene plays a role in sex determination.
11. Use Thomas Morgan's work with the eye color of fruit flies to explain how the heredity of sex-linked (X-linked) traits work.
12. Describe the process of X inactivation in female mammals. Include a discussion of methylation and Barr bodies in your description.
13. Explain how this phenomenon of X inactivation produces the tortoiseshell coloration in cats.
14. Explain how each of the following phenomena differs from the work done by Gregor Mendel and classical Mendelian inheritance patterns.
a. Incomplete Dominance
b. Codominance
c. Pleiotropy
d. Epistasis
e. Polygenic Inheritance
f. Sex Linkage
g. Gene linkage

Linked Genes

13. Distinguish between linked genes and sex-linked genes.
14. Describe the independent assortment of chromosomes during Meiosis I. Explain how independent assortment of chromosomes produces genetic recombination of unlinked genes.
15. Distinguish between parental type and recombinant type chromosomes. Draw a diagram that illustrates the difference between the two.
16. Explain why linked genes do not assort independently. Explain how crossing over can unlink genes.
17. How can linked genes be used to map the locations of genes on chromosomes?
18. State the relationship between the distance between two genes and the probability that the genes will recombine due to crossing over.
19. Genes A, B, ac C are located on the same chromosome. Test crosses show that the recombination frequency between A and B is 28% and that between A and C is 12%. Can you determine the linear order of these genes? Explain.

Chromosomal Mutations

20. Genes A, B, ac C are located on the same chromosome. Test crosses show that the recombination frequency between A and B is 28% and that between A and C is 12%. Can you determine the linear order of these genes? Explain.
21. What happens during nondisjunction? When and where might nondisjunction take place?
22. How does a zygote develop a condition known as aneuploidy? How do the terms monosomic and trisomic relates to this condition?
23. How is polyploidy different from aneuploidy?
24. Errors in meiosis or damaging agents such as radiation can cause breakage of a chromosome, which can lead to four types of changes in chromosome structure. Use sketches and captions to distinguish between these four changes: deletion, duplication, inversion, and translocation
25. Discuss how chromosomal mutations may lead to Down Syndrome.
26. Compare and contrast Klinefelter syndrome and Turner syndrome.

SUPPLEMENTARY Resources: Click the links below for more information to help you learn more about this lesson.

Interactives

- University of Arizona Biology Project: Sex-Linked Problem Set
- WH Freeman: Linked Genes
- Utah Learn Genetics: Genomic Imprinting
- U of Miami Animation: Genomic Imprinting
- The Blue People of Troublesome Creek: interesting story about a family from Kentucky with methemoglobinemia
- Queen Victoria and Hemophilia: Trace the passage of hemophilia through the royal families of Europe
- NCBI: Linkage Maps

Lectures

- Bozeman Biology's "Chromosomal Genetics" video.
- Bozeman Biology's "Advanced Genetics" video.
- Bozeman Biology's "Blood Types" video.
- Bozeman Biology's "X Inactivation" video.
- Bozeman Biology's "Linked Genes" video.

